PersonRank: Detecting Important People in Images
نویسندگان
چکیده
Always, some individuals in images are more important/attractive than others in some events such as presentation, basketball game or speech. However, it is challenging to find important people among all individuals in images directly based on their spatial or appearance information due to the existence of diverse variations of pose, action, appearance of persons and various changes of occasions. We overcome this difficulty by constructing a multiple Hyper-Interaction Graph to treat each individual in an image as a node and inferring the most active node referring to interactions estimated by various types of clews. We model pairwise interactions between persons as the edge message communicated between nodes, resulting in a bidirectional pairwise-interaction graph. To enrich the personperson interaction estimation, we further introduce a unidirectional hyper-interaction graph that models the consensus of interaction between a focal person and any person in a local region around. Finally, we modify the PageRank algorithm to infer the activeness of persons on the multiple Hybrid-Interaction Graph (HIG), the union of the pairwise-interaction and hyperinteraction graphs, and we call our algorithm the PersonRank. In order to provide publicable datasets for evaluation, we have contributed a new dataset called Multi-scene Important People Image Dataset and gathered a NCAA Basketball Image Dataset from sports game sequences. We have demonstrated that the proposed PersonRank outperforms related methods clearly and substantially. Our code and datasets are available at https:// weihonglee.github.io/Projects/PersonRank.htm.
منابع مشابه
Combining and Steganography of 3-D Face Textures
One of the serious issues in communication between people is hiding information from the others, and the best way for this, is to deceive them. Since nowadays face images are mostly used in three dimensional format, in this paper we are going to steganography 3-D face images and detecting which by curious people will be impossible. As in detecting face only, its texture is important, we separat...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملDetection of construction debris dumping sites using Landsat images (Case study: Shahriar and Mallard districts)
Natural phenomena and human activities are always changing the earth and Knowing about changad information of the earth’s surface is becoming more and more important in monitoring the local, regional and global resources and environments. The large collection of past and present remote sensing images made it possible to analyze spatio-temporal pattern of environmental elements and impacts of hu...
متن کاملDetection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform
This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...
متن کاملDetection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform
This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.01984 شماره
صفحات -
تاریخ انتشار 2017